Tetrahedron Letters No. 44, pp 4287 - 4290. @Yergamon Press Ltd. 1979. Printed in Great Britain.

SYNTHETIC STUDIES ON B-LACTAM ANTIBIOTICS. PART 11. COMPLETELY STEREOCONTROLLED SYNTRESIS OF 7a-DNSUBSTITUTED l-OKACEPHEMS FROM PENICILLINS

Mitsuru Yoshioka,* Ikuo Kikkawa, Teruji Tsuji, Yasuhiro Nishitani, Sachio Mori, Kyo Okada, Masayuki Murakami, Fumihiko Matsubara, Masaaki Yamaguchi, and Wataru Nagata* Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka 553, Japan

Summary: A cis intermediate 2 was obtained by novel reductive cleavage of 2, prepared from $\frac{1}{2}$ in 6 steps including a new ester to ketone conversion. Regioselective bromination of 3 followed by substitution and known conversions gave l-oxacephems $5.$

Despite recent increasing interest in 1-oxacephem² antibiotics having much higher antibacterial activity than that of the 1-thia congeners, cephalosporins, $^{1,3,\tilde{4}}$ development of 7α -unsubstituted 1-oxacephems $5c$ as potent antibiotics has been hindered by the lack of a stereocontrolled synthesis of the l-oxacephem nucleus which is not naturally occurring. All known total or partial syntheses of l-oxacephems involve intra- or intermolecular etherification of 4-chloroazetidinones with concomitant or sole formation of undesired α -oxa (trans-oxa) epimers.³⁻⁵ Quite recently, a stereocontrolled synthetic route leading specifically to 7α methoxy-l-oxacephems was reported from our laboratories.⁶ We wish to report here the first stereocontrolled synthesis of 7 α -unsubstituted 1-oxacephems 5c from 6-aminopenicillanates 1.

Our synthetic strategy consists of conversion of 6-aminopenicillanate L into acetyloxazolidine-azetidinone 2 , its reductive cleavage to intrinsically cis acetonyl ether 3 as a key reaction, and its functionalization at the terminal methyl to give versatile intermediates 4. Transformation of 3 and 4 to 1-oxacephems 5c can be done by applying known processes. 1,3

To obtain the compound 2 , direct preparation of the acetyloxazolidine nucleus 6 was attempted unsuccessfully by reaction (N-methylmorpholine, THF, 0°C or -50°C; ZnCl₂ or AgBF₄)⁷ of 4-chloroazetidinone 7^3 with aldehyde 8 (a complex mixture formed). This first difficulty in our synthesis was overcome by our finding that the desired compound 2 could be practically prepared by selective reduction of oxazoline 11 having a carbomethoxy group, which is less reactive than acetyl but still capable of activating the C=N bond, to oxazolidine 12 followed by conversion of carbomethoxy into acetyl. Thus, acylation $(\text{CH}_3O_2CCOCI, \text{NEt}_3, \text{THF}$ or CH_2Cl_2 , 3°C or -8°C) of 1 (κ^1 = CH₂Ph;^{8a} κ^1 = CHPh₂^{8b}) to oxalyl amides 2, chlorination (C1₂, CH₂Cl₂, -20°C) to 4-chloroazetidinones 10, cyclization (ZnC1₂, NEt₃, THF) to oxazolines 11, and selective reduction [Al amalgam, THF-H₂O (5-10%), 20-40°C (exothermic)] gave the carbomethoxyoxazolidines 12^9 (R¹ = CH₂Ph, mp 114-116°C, 51%; R¹ = CHPh₂, mp 128.5-130.5°C, 54% overall yield from 1) as crystals. Purification of intermediates $9-11$ was not necessary. Phenylacetylation $(C_6H_5CH_2C0C1$, pyridine, toluene, 0°C) of 12 gave amides 13a, which without purification were converted into the acetyloxazolidines 2^9 , 10 (R¹ = CH₂Ph, ¹¹ 72%; R¹ = CHPh₂, mp 122.5-123.5°C, 59% overall yield from 12) by conventional five-step process [NaOH, aq acetone, 0° C; (COC1)₂, DMF, C₆H₆; CH₂N₂, CH₂C1₂, 0°C; HC1, Et₂O; Zn, AcOH] via 13b-13e. In an alternative, much improved one-step process, 12 the esters 13a were treated with methylmagnesium bromide or iodide and triethylamine in toluene-Et₂0 at -35°C to give the ketones 2 $(R^{1} = CH_{2}Ph, 59\%; R^{1} = CHPh_{2}, 70\%$ overall yield from 12). Significantly, this Grignard reaction in the presence of the amine could achieve not only the direct ester-to-ketone conversion, but also highly selective conversion of the methoxycarbonyl group into acetyl despite the presence of the butenoic ester and the reactive B-lactam ring.

The critical step in this synthetic route is conversion of the acetyloxazolidines 2 thus prepared into the acetonyloxy compounds 3 by reductive cleavage, since, to our knowledge, the reaction of this type has not been reported in the literature. There would be two possible paths, a and b, as shown in formula A, and the key is to increase the selectivity of path a and to prevent further reduction of the desired product λ . The best conditions found after extensive study are slow addition of an ethereal solution of HCl to a mixture of 2 , an excess of activated zinc, \underline{t} -BuOH, and C_6H_6 or CH_2Cl_2 ¹³ until over-reduction by-products become

noticeable on TLC. It is essential to stop the reaction before the substrate Lis consumed. After simple chromatography $(C_6H_6$ -AcOEt, silica gel), there were isolated the known cisacetonyl ethers $\frac{3}{2}$ (R⁻ = CH₂Ph,¹⁴ 40-50%; R⁻ = CHPh₂, 48-51%) and the unchanged starting materials $(R^1 = CH_2Ph 11-25\pi; R^1 = CHPh_2, 38-45\pi)$.

Completely regioselective bromination of ketones 2 at the terminal methyl was achieved by reaction with CuBr₂¹⁵/HC(OEt)₃/ EtOH/40-60°C to give a-bromo ketals 14b, which were subsequently hydrolyzed with HClO₄/aq acetone/50°C to bromo ketones $4a^{16}$ in good yields. Intermediacy of ketals 14a in this bromination is apparent from their isolation in an early stage and will favor the terminal bromination.¹⁷ The reactive bromides $\frac{4a}{5}$ can undergo facile nucleophilic substitution as exemplified by conversion [1-methy1-1H-tetrazole-5-thiol, triethylamine, 0° C, aq acetone; ¹⁸ AcONa, DMF; chromatography $(C_{6}H_{6}^{-}$ AcOEt, silica gel)] into tetrazolthio compound $4b$ (R^1 = CH₂Ph,¹⁴ 53% overall yield from 3) and acetates $4c$ (R^1 = CH₂Ph,¹⁴ 45%; R⁺ = CHPh₂,⁺ 39% overall yield from <u>3</u>).

The ethers 3, $4b$, and $4c$ synthesized above were easily converted into various 1-oxacephem antibiotics $5c$ according to the general method reported from our laboratories^{1,3,6} consisting of ozonolysis $(15a)$, reduction $(15b)$, chlorination $(15c)$, reaction with triphenylphosphine ($15d$), intramolecular Wittig reaction ($5a$), side-chain cleavage ($5b$), and acylation with useful side-chain components.

The present route provides the first, practical, stereocontrolled synthesis of $7p-$ unsubstituted 1-oxacephem antibiotics 5c. Antibacterial activity of some of 5c, superior to that of the 1-thia congeners, has been reported.¹⁹

References and Notes

- (1) Part 10: M. Narisada, T. Yoshida, H. Onoue, M. Ohtani, T. Okada, T. Tsuji, I. Kikkawa, N. Haga, H. Satoh, H. Itani, and W. Nagata, <u>J. Med</u>. Chem. 22, 757 (1979).
- (2) The trivial name of 1-oxacephem(s) is used for 1-oxa-1-dethiacephalosporin(s); see ref 1.
- (3) M. Narisada, H. Onoue, and W.Nagata, <u>Heterocycles</u> <u>7</u>, 839 (1977).
- (4) R. A. Firestone, J. L. Fahey, N. S. Maciejewicz, G. S. Patel, and B. G. Christensen, $\underline{\hskip 1mm}$ $\underline{\hskip 1mm}$. Med. Chem. 20, 551 (1977).
- (5) (a) L. D. Cama, and B. G. Christensen, <u>J</u>. <u>Am</u>. <u>Chem</u>. <u>Soc</u>., <u>96</u>, 7582 (1974); (b) S. Wolfe, J. B. Ducep, K. C. Tin, and S. L. Lee, Can. J. Chem. 52, 3996 (1974); (c) C. U. Kim, and D. N. McGregor, Tetrahedron Lett. 409 (1978); (d) E. G. Brain, C. L. Branch, A. J. Eglington, J. H. C. Nayler, N. F. Osborne, M. J. Pearson, T. C. Smale, R. Southgate, and P. Tolliday, "Recent Advances in the Chemistry of β -lactam Antibiotics", Elks, J., Ed.,

The Chemical Society, Burlington House, London, 1977, p 204.

- (6) S. Uyeo, I. Kikkawa, Y. Hamashima, II. Gna, Y. Nishitani, K. Okada, T. Kubota, **K.** Ishikura, Y. Ide, K. Nakano, and W. Nagata, J. Am. Chem. Soc. 101, 4403 (1979).
- (7) Under similar conditions trichloroacetaldehyde reacted with ζ to give the trichloroacetyloxazolidine nucleus (CCl₃ instead of CH₃ in 6) in 48% yield.
- (8) (a) E. G. Brain, I. McMillan, J. H. C. Nayler, R. Southgate, and P. Tolliday, J. Chem. Soc., Perkin Trans. I 562, 1975; (b) M. Murakami, I. Isaka, and T. Kashiwagi, Japan. Patent 7,126,501 (1971); Chem. Abstr. 76, 3848n (1972).
- (9) The stereochemistry at the asterisked carbon was not determined. Each of these compounds was obtained as a single epimer.
- (10) Compounds 2 can be used for the next step without purification. Shown are isolated yields of materials purified by chromatography $(C_6H_6$ -AcOEt, silica gel).
- (11) Obtained as foams: IR (CHC1₃) 1785, 1727, 1703, 1670 cm⁻¹; ¹H NMR (CDC1₃) δ 1.85 and 2.18 (each 8, 3 H, propylidene methyl), 2.28 (s, 3 H, acetyl), 3.92 (s, 2 H, N-side chain methylene), 5.15 and 6.03 (each d, 1 H, $\underline{J} = 4$ Hz, C₁ and C₅ H), 5.23 (ABq, 2 H, $\underline{J} = 14$, 13 Hz, benzyl ester methylene), 6.15 (s, 1 H, C₃ H), 7.38 and 7.42 (each s, 5 H, phenyl).
- (12) This Grignard process can be generally applied to conversion of esters to ketones: I. Kikkawa and T. Yorifugi, to be published.
- (13) The benzene or dichloromethane was added to dissolve the substrate. Aluminum amalgam/CF₃CO₂H/t-BuOH also was effective, though yields of 3 were slightly lower.
- (14) Authentic samples of these benzyl esters were prepared from the corresponding diphenylmethyl esters^{1,3} by deblocking (CF₃COOH-anisole, CH₂Cl₂, 0°C) followed by reesterification $(PhCH₂Br-NEt₂, acetone).$
- (15) L. C. King, G. K. Ostrum, J. Org. Chem. 22, 3459 (1964).
- (16) Spectral data of 4a, R^1 = CH₂Ph: IR (CHC1₃) 1780, 1730, 1685 cm⁻¹; ¹H NMR (CDC1₃) δ 1.98 and 2.25 (each s, 3 H, propylidene methyl), 3.62, 3.68, and 4.12 (each s, 3 H, phenylacetyl and bromoacetonyl methylenes), 5.1-5.5 (m, 4 H, benzyl ester methylene, C_3 H, and C_A H), 6.73 (d, 1 H, <u>J</u> = 7 Hz, amide H), 7.4 (two s, 10 H, phenyl); R⁺ = CHPh₂: IR (CHCl₃) 1780, 1730, 1690 cm⁻²; ¹H NMR (CDCl₃) δ 1.97 and 2.25 (each s, 3 H, propylidene methyl), 3.60 (s, 4 H) and 4.02 (s, 2 H) (phenylacetyl and bromoacetonyl methylenes), 5.12 (d, 1 H, $\underline{J} = 4$ Hz, C_A H), 5.30 (dd, 1 H, $\underline{J} = 8$, 4 Hz, C_3 H), 6.72 (d, 1 H, $\underline{J} = 8$ Hz, amide H), 6.97 (s, 1 H, diphenylmethyl ester methine), $\sqrt{7}$.3 (m, 15 H, phenyl).
- (17) M. Gaudry, A. Marquet, Bull. Soc. Chim. France 4169 (1969).
- (18) The reagents were added to the preceding hydrolysis mixture.
- (19) T. Yoshida, The Royal Society Discussion Meeting "Penicillin 50 years after Fleming", London, May 1979, The Chemical Society, London; Abstr. p 10. A full account will appear soon in Philosophical Transactions of the Royal Society.

(Haceived in Japan 23 July 1979)